Calculating Liquid Chemical Dilutions

Important Note: All warnings, cautions and recommendations listed by the manufacturers/OSHA should be complied with when working with chemicals.

Example No. 1 - Dry Powder-weight Dilutions

Assume desired concentration of citric acid solution is 15 percent (\%). Concentration of stock dry powder citric acid is 100%. Total amount of 15% solution desired is approximately 1000 milliters (ml) *

- 1 ml of purified water weighs 1 gram.
- 15 percent of the 1000 ml solution must be citric acid.
- $15 \%(0.15) \times 1000=150 \mathrm{ml}$ (or 150 g) of the solution must be citric acid and the remainder is $1000-150=850 \mathrm{ml}$ of purified water (add 850 ml of water to 150 g of powder).
- to check your calculations: 150 ml (grams)

$$
\begin{aligned}
& -------\quad \text { x } 100=15 \% \text { solution } \\
& 1000 \mathrm{ml} \text { total }
\end{aligned}
$$

> * Important Note
> Total liquid volume of a diluted and mixed solution will depend on the specific gravity of the chemical powder you choose. Specific gravity for different dry powder chemicals may not be the same. For RPC citric acid powder the actual total volume of the example to the left is 940 mL . For more information on citric acid dilution, ask for filename "dilution.pdf".

Example No. 2 - Stock Solution at 100 \% Concentration
Assume desired concentration of Flocide 375 peracetic acid solution is one percent (1 \%).
Concentration of stock solution is 100% Flocide 375 . Total amount of 1% solution desired is 5 gallons.

- 5 gallons is equal to 640 fluid ounces (fl.oz).
-1% of the $640 \mathrm{fl} . \mathrm{oz}$ solution must be stock Flocide 375.
- $1 \%(0.01) \times 640=6.4 \mathrm{fl} . \mathrm{oz}$ of the solution must be Flocide 375 and the remainder is $640-6.4=633.6$ fl.oz of purified water (add 633.6 fl.oz of water to $6.4 \mathrm{fl} . \mathrm{oz}$ of 100% Flocide 375).
- to check your calculations: 6.4 fl .oz
$--------\quad$ x $100=1 \%$ solution
$640 \mathrm{fl} . \mathrm{oz}(5 \mathrm{gal})$
- to convert fl. oz to ml or liters (l) refer to conversion chart on reverse side, $6.4 \mathrm{fl} . \mathrm{oz}=189 \mathrm{ml}, 633.6 \mathrm{fl} . \mathrm{oz}=18.74$ liters

Example No. 3 - Stock Solution Not At 100 \% Concentration
Assume desired concentration of hydrogen peroxide is 0.5 percent.
Concentration of stock solution is 3 percent.
Total amount of 0.5 percent solution desired is 1000 ml .

- 0.5 is what percent of 3 ? Or: $\quad 0.5 / 3=0.167(16.7 \%)$
- 16.7 percent of the 1000 ml solution must be 3% stock solution to make 1000 ml of 0.5 percent solution.
$-16.7 \%(.167) \times 1000=167 \mathrm{ml}$ of 3% solution and the remainder is $1000-167=833 \mathrm{ml}$ of purified water.
- to check your calculations: 167 ml x .03 (3\%)
------------------- x $100=0.5 \%$ solution

Example No. 4 - Converting PPM to Percent Concentration
Assume 500 part per million (ppm) sodium hypochlorite solution is to be mixed from bleach solution (5.25% sodium hypochlorite). Desired amount of solution is 1000 ml .

- 1 million/1million $=100 \%$ therefore bleach which is 5.25% sodium hypochlorite is 5.25% (0.0525) x 1 million ppm's of sodium hypochlorite. A 500 ppm solution would be $500 / 1$ million $=$ 0.0005 or 0.05 percent sodium hypochlorite.
-0.0525×1 million $=52,500 \mathrm{ppm}$ of sodium hypochlorite in bleach.
- 500 ppm is what percent of 52,500 ? Or: $500 / 52500=0.00952(0.952 \%)$
-0.952% of the 1000 ml solution must be stock bleach solution to make 1000 ml of a 500 ppm sodium hypochlorite solution.
$-0.952 \%(0.00952) \times 1000=9.52 \mathrm{ml}$ of bleach and the remainder 1000-9.52 $=990.48$ of purified water.
- to check your calculations: 9.52 ml x 0.0525 (5.25\%)
$------------\quad$ x $100=0.05 \%$ solution

Measurement Unit Conversion Chart

- 1 milliliter of purified water weighs 1 gram
-1 pound $(\mathrm{lb})=453.6$ grams
- 1 fluid ounce (fl.oz) $=29.57$ milliliters (ml)
-1 gallon (gal) $=128$ fluid ounces $=3785 \mathrm{ml}=3.785$ liters (1)
-1 milliliter $(\mathrm{ml})=0.0338$ fluid ounces (fl.oz)
-1 liter $(\mathrm{l})=0.2642$ gallons (gal)

